
import numpy as np
from sklearn import datasets, linear_model, metrics
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

Overview:
To predict the progression of diabetes in patients, we will use linear regression with gradient 
descent in this
hands-on assignment. In this tutorial, you will learn how to implement linear regression with 
gradient
descent in Python.
Using scikit-learn, a Python machine learning library, we will first load and train a linear regression 
model.
Our implementation will be tested against the results of scikit-learn. Our next step will be to 
implement linear
regression using gradient descent.

Dataset:
The following code illustrates how to load and split the dataset. Visit the following link
(https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html) for more information about the 
dataset.

In [ ]: # Load diabetes dataset
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data # matrix of dimensions 442x10
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

Data description:
A total of 442 diabetes patients are included in the dataset. There are 10 input variables for each 
patient -
age, sex, body mass index, average blood pressure, and six measurements of blood serum. The 
blood
serum measurements are: Total Cholesterol (TC), Low Density Lipoprotein (LDL), High Density 
Lipoprotein
(HDL), TC/HDL, Low Tension Glaucoma (LTG) and Glucose. The target is a quantitative measure 
of disease
progression after one year.



Feature Standardization:

Before training, we standardize the features to have zero mean and unit variance using 
StandardScaler. This ensures all features contribute equally to the model and improves the stability 
and speed of gradient descent.

Standardization is performed with:

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

From this point onward, we use the standardized dataset (X_scaled) for both training and 
evaluation.

Sanity check:
In order to determine whether our implementation is correct, we will use the results from scikit-
learn. The
linear regression model in scikit-learn can be trained with just a call to function fit on the model 
since scikit-
learn is a machine learning library. You can see the documentation here (https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html).

# with scikit learn:
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
# The coefficients
print("Coefficients: \n"
, regr.coef_)
# The mean squared error
mean_squared_error = metrics.mean_squared_error(diabetes_y_test, di
abetes_y_pred)
print("Mean squared error: %.2f" % mean_squared_error)
print("="*80)



We can use the above values of the mean squared error (2004.57) as the target value for the 
mean squared
error for our implementation. We can also compare the coefficients after training our model to 
check if we
get the same results. Note that the numbers might not match exactly, but as long as they match 
reasonable
well (say within 1%), we should be fine.

Implementing Linear Regression with Gradient
Descent
Now, it's time to implement linear regression ourselves. Here's a template for you to get started.

# train
X = diabetes_X_train_scaled
y = diabetes_y_train

# train: init
W = ...
b = ...
learning_rate = ...
epochs = ...

# train: gradient descent
# Note: Save the mean squared error at each iteration in a list (e.g., 
mse_history)
# for later visualization (MSE vs. iteration plot).
mse_history = []

for i in range(epochs):
    # calculate predictions
    # TODO

    # calculate error and cost (mean squared error)
    # TODO
    # mse_history.append(current_mse)

    # calculate gradients
    # TODO

    # update parameters
    # TODO

    # diagnostic output
    if i % 1000 == 0:
        print("Epoch %d: %f" % (i, current_mse))



Visualizing Your Model's Performance

Once you have completed your gradient descent implementation and tested it against the results 
from scikit-learn, you will now visualize your model’s behavior and performance.

Below is a plotting template. You must create three plots to evaluate the learning process and your 
trained model.

1. Plot MSE vs. Iteration

• Plot the training loss (mean squared error) over the course of training.

• Use the values you stored in mse_history.

• This helps you visualize whether the model is learning and if the error is decreasing.

2. Plot True vs. Predicted Values

• Create a scatter plot comparing the model’s predicted values (on the test set) with the true 
target values.

• A dashed diagonal line (y = x) can help show how close your predictions are to the ideal 
output.

3. Plot Feature Importance

• Visualize the absolute value of each learned coefficient.

• This shows which features were most important in the model’s decision process.

• You must use the weights from your manual gradient descent implementation (W), not 
scikit-learn’s.


